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By using the cycle expansion, we obtain general expressions for the determination of the diffusion
coefficient D of a piecewise linear map which is parametrized by k and % (where the map contains 2k +5

branches of line segment, and /% is the height of the shortest line).

By restricting A =8/m

[B=1,...,(k +1)/2; m is the slope of the map], a closed form expression of D can be obtained and some
of its consequences are discussed. The limiting form of D (k — o) is then shown to be k2. For the sim-
plest case with k =1, we also show that more exact results can be found. A limiting case with 7 —0 is
discussed where agreement with the result obtained from the invariant measure approach is established.

PACS number(s): 05.40.+j, 03.20.+i

I. INTRODUCTION

Diffusion is an old problem which has been discussed
in physics and mathematics since the end of the last cen-
tury. One of the famous mechanisms is given by the
thermal agitation of the molecules and such motion has
been named Brownian motion. Theoretically, Brownian
motion can be modeled by particle motion under the
influence of a stochastic force term.

In recent years, diffusion has been realized in dynami-
cal systems in which the dynamics is completely specified
and it is called deterministic diffusion. In this kind of
diffusion, the mechanism is due to the chaotic motion of
the system. This is an interesting phenomenon in which
stochastic behavior is generated by a deterministic sys-
tem. It is also interesting to note that deterministic
diffusion can be related to a real physical system such as
Josephson junctions driven by microwave radiation [1].
Recently, some exact results of the diffusion coefficient D
has been evaluated by Artuso [2]. By employing the cy-
cle expansion techniques developed by Artuso, Aurell,
and Cvitanovic [3], Artuso was able to obtain expressions
which led to the exact determination of D in a whole
class of models. However, in [2], the symbolic dynamics
are unrestricted. It is of great interest to see if the same
method can also be extended to cases where pruning can
occur. In a recent paper, Tseng et al. [4] has indicated
that in some special cases of the simplest mapping with
pruning, D can also be obtained. In this work, based on
the approach of [3] we provide a general discussion of the
exact results of the general piecewise linear map where
pruning is allowed. It is interesting to note that for all
cases a general classification of the pruning rule can be
established and hence exact expressions are obtained
within the context of cycle expansion. As a consequence,
closed form expression of D is obtained in a subclass of
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these models, and also the large k limit of D can be
found. Furthermore, we have found a new class of exact
results in the simplest model. By exploring the limit of
these results, we are able to show a scaling limit exists
which is in agreement with the invariant measure ap-
proach.

This paper is organized in the following manner. In
Sec. II, we briefly review the method of cycle expansion.
Then we discuss the general piecewise linear map in Sec.
III, all exact expressions for determining D are given in
this section. The closed form expression of D is given for
a subclass of maps and some of its consequences are dis-
cussed in Sec. IV. More exact results of the simplest
model are treated in Sec. V, where a scaling limit is estab-
lished and also shown to be in agreement with previous
work. In the final section a brief discussion on some gen-
eral results is given. The Appendix contains all the prun-
ing rules and symbolic dynamics of the main text.

II. CYCLE EXPANSION

In this section, the method of cycle expansion is briefly
reviewed; more details and notations can be found in [3].
Cycle expansion is a perturbation theory for chaotic sys-
tems of low dimensional phase space. The essence of this
method is to express averages over chaotic orbits in terms
of unstable short periodic orbits. The contribution of
long periodic orbits is expected to be exponentially small
and hence a meaningful expansion can be obtained. The
mechanism for small contribution from long periodic or-
bits is due to cancellation. For simple cases such as
piecewise linear mapping (which are treated in this work)
the cancellation is exact and the results are then com-
pletely given in terms of a few short periodic orbits.

Cycle expansion is an expansion on the dynamical §
function of a dynamical system. The { function can be
obtained by the transfer operator technique. The transfer
operator T is a linear evolution operator of the system
(such as the one used in the evaluation of the escape rate
of a repeller [4]) which determines the evolution of the
system under the deterministic map x,,;=f(x,). For
example, the kernel of the escape rate of a repeller is
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T(y,x)=8(y —f(x)) . (1)

Since the evolution of the system is completely deter-
mined by 7, the evaluation of its eigenspectrum is the
most important issue in the discussion of its dynamical
properties. It is easy to see that the eigenspectrum of T is
related to the following determinant:

det(1—zT)= exp[Trin(1—2zT)]

@ zn n
- 2 HTI‘(T )

n=1

= exp . (2)

Due to the fact that Tr(T") picks up contributions from
all repeats of prime cycles p

n
n/p

Te(T")= 2 nytp s (3)
n |n

where npln denotes that n, is a divisor of n, the above
determinant can be rewritten as

det(1—zT)= [ (1—z""t,) . @
p

In (4) all prime cycles p should appear in the product.
The dynamical § function is then defined as

8o (z)=det(1—2zT)=[] (1—1,) . (5)
p

Here we have absorbed the z factors into ¢,: zn"tp—>tp.
We would like to emphasize that Eq. (5) is exact and no
approximation has been used up to this point. It is now
clear that the eigenspectrum of T is the zeros of £ !
To illustrate how cycle expansion can be done, we ex-
pand the Euler product (5)
Gl=TI0—1)=1—

2 tp1+p2+"'+pk ’

P PPy Py
k+1 ©)
tpl+p2+...+pk_‘(—1) tpltpz'”tpk .

Since the expansion contains z to all orders, it is neces-
sary to assume z being small enough such that the infinite
sum makes sense. Therefore all manipulations are only
done formally. Fortunately, due to cancellation, the
infinite sum is truncated to a finite sum and the require-
ment of having small z goes away. The next step is to
reorganize the various terms in (6) in a definite manner
which also provides a way to see how cancellation can
occur. To make the discussion more concrete, we will
take the binary dynamics as an example. For this case
the above expansion can be written explicitly

le(l_to)(l”tl)(1_t10)(1—t100) e

=1—tog—t;—tip "t tio " " ~lo+i

“lovor T T ™

where the prime cycles are denoted by the symbolic se-
quences of two unrestricted symbols {0,1}. The reorgan-
ization is done by grouping the terms of the same total
symbol string length
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So'=1—tg—t,— [t —tot]
—[(t100—210t0) T (101 —Eypty)]— -+ . (8)

It is obvious in this expansion that ¢, and ¢, are the
most important quantities since all longer orbits can be
pieced together from them approximately. Therefore all
the periodic orbits which cannot be approximated by
shorter orbits are called fundamental cycles. In the
above example, the fundamental cycles are ¢, and ¢;. The
terms of the same total length which are grouped togeth-
er in the brackets of (8) are called the curvature correc-
tions c,, where n denotes the total length. If all curva-
ture corrections vanish, then &5 ! is exactly given in terms
of the fundamental cycles and this is the spirit of cycle
expansion. For the case in which ¢, are nonvanishing,
cycle expansion provides a systematic way to carry out
corrections. For the case of binary dynamics generated
by the tent map, it can be shown that all curvature
corrections vanish identically. This is due to the uniform
hyperbolicity in this particular map. In this case, the ;!
is a linear equation in z and its zero can be computed ex-
plicitly. For other cases, £, ! is given by a polynomial of
z of finite degree. The finite degree of £; ! arises from two
possibilities. Either (a) due to vanishing curvature
corrections or (b) by truncation. The last possibility can
only be justified by the convergence of the problem to the
next leading order.

III. PIECEWISE LINEAR MAP
AND DIFFUSION COEFFICIENT

The piecewise linear map is defined as follows:
Xn+1 :f (xn ) ’

fx+n)=f(x)+n,

9)

and the map f (see Fig. 1) is defined on the interval

f(x)

FIG. 1. The graph of f(x), in this graph A =1+4h.
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I=[0,1]:
mx, x€ 0,—}1—}
m
f(x)=1{—mx+2h, x€ i%] , (10)
mx +(1—m), x€ 3”_1,1]
m

where A is the absolute maximum of f on I. An associate
map f can be constructed from f by defining f=f mod
1. As pointed out by Artuso [2], the diffusion coefficient
D of f can be obtained by considering an appropriate §
function defined by the associate map f. For this prob-
lem, the § function is

o Nz,a)= ] [1—2z"7 exp(o,a)/|A,l], (11
P
where p denotes the prime cycles of f and n, being the
period of prime cycle p; o, is the integer part of fn” at
one of periodic point x, and

"p
A = a7’

PT dx (12

X —Xp

For the linear map considered in this work, |A,|=m.
The diffusion coefficient D is then determined by

2
1azc

2 da?

D=- ) (13)

a=0

where z, is the smallest zero of &, ! defined in (11).

In general, the graph of f consists of 2k +5 line seg-
ments (Fig. 2), where k is an odd integer. The line seg-
ments can be divided into two groups which have slopes
m and —m, respectively. For the lines with slope m, the

k+1
2
——
cl| |d
Kotk

FIG. 2. The graph of the associated map f(x). The labels of
some line segments are given.
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number of line segments is k +3 and the remaining k +2
line segments have slope —m. For the case with & being
an integer, the range of f of these lines covers the interval
[0,1]. However, the h being a noninteger, there are two
line segments with the maximum value of f less than uni-
ty and they are labeled by a and b; furthermore, there are
another two line segments with the minimum value of f
greater than zero and they are labeled by ¢ and d. The
maximum value of f for a and b is parametrized by #.
The rest of the lines have the same maximum value of f
which is equal to 1 and they are labeled by
1,2,...,2k +1 (Fig. 2). Thus, the associate map f is
characterized by two parameters k and /4. In the follow-
ing, we shall establish the fact that for each case of fixed
k, there are 2k +5 different values of # which lead to ex-
act expressions for determining D. Moreover, it is in-
teresting to note that, for all cases, the expressions are at
most cubic polynomials in z.

These 2k +5 different values of # are determined by

the following relations:

m=4h+2k +1, (14a)
(14b)

and

=
It
+
[\®]
>)

(14c)

+k
——+{+ DA
m

K +k+B
m

47,

where B=1,...,K,;1=12; f'=1,...,k and A is the
width of the projection of line segment a on the x axis.
Here we define K, =(k*1)/2 where K_ will be needed
in later discussion. It is obvious that 4 can be classified
into six classes which are just corresponding to six
different kinds of symbolic dynamics. For the case with
h=1, this is corresponding to A=1/m, =K, and
m =2k +5. This case has been already discussed in [2].
For other values of 4 all discussions on the pruning rules
and the corresponding symbolic dynamics of these cases
are given in the Appendix. Here, we only quote the ex-
pressions of the cycle expansion and the expressions
which determine z,. In what follows, the slope m can be
determined from Eq. (14).

We proceed in the order of increasing %, the first class
is h =B/m where B=1,...,K,. For this class, the
symbolic dynamics is simple and the § function is

LoHza)=1— S t,— 3 3'tai» (15)

i€Q a€EAd i
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where 4 ={a,b,c,d}; Q={1,...,B2k+1—p3,...,2k
+1}, and the restricted sum 3; restricts i =1,...,[ for
a=aor band i=2k+1—p,...,2k+1 for a=c or d.
The equation to determine the zero of &, ! is

z kS 4z2 B!
1—— 3 a,coshna—— 3 cosh(K, +n)a=0.
n=0 m= ,=o

(16)
1
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Here, a;=3 and a,, =4 for n7-0. Since this is a quadratic
equation in z, the solution of z can be obtained analytical-
ly. We will come back to this point in the next section.
The evaluation of D is straightforward and will also be
discussed in Sec. IV.

The next case is corresponding to 2 =(K_ /m)+A.
This case has a fixed point, its symbolic dynamics be-
comes interesting and will be discussed in the Appendix.
The & function is

Lo lma)=1—t,—t,— 3 t;— 3 t,,— 3ttty tt, | 3 4+ 3 .
ieQ YET yET ie(TuQ) yET
+i, > Lt Xttty XY, 17)
i€(ruQ) y€r i€Q

where o={1,...,K;(3k+1)/2,...,2k +1};
r={1,2,...,K,}, and I'={3k+1)/2,...,2k +1};
QO={K,+1,...,K_+k}. The corresponding equation
for z is

2 K« 22
1—— % a,coshna+-—
m n=0 m
223 2
+— X b,cosh(K, —n)a=0, (18)
m- ,—=o

where ag =2 and for n#K, a, are the same as the

previous case. Here, by=1 and b, =2 for n#0. Since
(18) is a cubic equation, its analytic solution can also be
obtained and hence exact evaluation of D can be per-
formed.

The third case has new structure in the symbolic dy-

namics. For A=[(K,L+B)/m]+2A, with
B=0,1,...,K_. The ¢{ function is defined by
& Nza)=T] (1—1,) [T (1—¢,), (19)

pED pPED

where @ is a set in which unrestricted symbolic dynamics
can be defined and &’ denotes the set of all allowed prime
cycles excluded by ®. Here we have

®{1,...,2k+1,s|seT,,a=a,b,c,d,} . (20)

The symbols T, are defined in the Appendix. For &’ we
have

o' ={plpET,,a=a,b,c,d} . 21

Again T, can be found in the Appendix. By expanding
out (19), the equation for z is

2 K, 2 2K_—8B
1-=3 a,,coshna+—z; >  b,cosh(k —B—n)a
m =o m n=0
3 K_—-8
—iz—s > d,coshna=0. (22)
m n=0

All a, are defined as before, and the coefficients b, are

1, n<K_—p
b,= 2,

n>K_ —'B- (23)
For d,, we have dy=1 and d, =2 for n#0. It is noted
that Eq. (22) is again a cubic equation. This remains to
be true in the next couple of cases. However, as
h>[(2k +1—K . )/m]+3A, then the degree of the equa-
tion becomes quadratic again as will be shown later.
For h=[(k +1+B)/m]+2A, with =0,1,2,...,K_,
the symbolic dynamics are the same (see the Appendix).
Hence we obtain

z 422 2
1—— ¥ a,coshna+—5 3 b,cosh(K, —n)a
n=0 m- ,=o
4z3 8
+—5 3 d,coshna=0. (24)
m

n=0

Here, a, and d, are defined as before; the coefficients b,
are

1, n<B

n~ |2 otherwise. (25)

As h reaches the value of [(3k +1)/2m]+3A, the T,
and T, defined earlier have a new feature. This is due to
the fact that mixing among {a,b,c,d} arises. The contri-
butions from @’ is

o

H (l_tp/):(l_ta)(l_td) l_kz tcdk_ 2 tbak
=0

pED

This expression can be simplified by expanding out the
right-hand side of (26), and we have

[T (1=t )=1— 3 t,+t,t.+t,t,+1,t, . 27
PED a€ A

By putting Eq. (27) and the contribution from @ into Eq.



51 DIFFUSION COEFFICIENT OF PIECEWISE LINEAR MAPS

(19), and also due to uniform hyperbolicity we have the
equation of z as
Ky 2 2 K-
z 3z 4z
1—= a,coshna+-—+— cosh(K ;. —n)a
m ng() " m2 m 2 n§0 N

23

——=0, (28)
m
where a,, is defined in the previous discussions.

The last case in which the coefficient D can also be ob-
tained exactly is when A =[(3k +1+48)/m]+4A, where
B=0,1,2,...,K,. As pointed out earlier, the cases with
B=K | have been discussed by Artuso [2] and we include
them here for completeness. The cycle expansion of the {
function is still given by the product of two factors,
namely, the contributions from the set ® and ®’, respec-
tively. From & and @' given in the Appendix we can
routinely obtain the equation

z X 422 ¥ F
1—— 3 a,coshna+—— 3 cosh(K, —n)a=0,
m ., —o m =0

(29)

where a,, is defined as usual. The interesting point about
this case is that it is a quadratic equation and a closed
form solution of z can be evaluated easily.

In passing, we observe that the results obtained in [2,3]
are just special cases in our discussions. In [2], Artuso
has discussed the situation where # =1 and k is an arbi-
trary integer. Whereas in [4], Tseng et al. have con-
sidered the case where k =1 with 4 being the allowed
values of (14). Furthermore, our results indicate clearly
that the equation for determining z is at most a cubic
equation of z. However, we should stress that this is only
true for the cases at hand. For other values of %, higher
power of z can appear. This can be seen in Sec. IV where
explicit examples are given. The reason for having an
equation with a degree less than four can be traced back
to the fact that the fundamental cycles only appear in the
form of ¢; and ¢;; which contain at most z2. The product
of contributions from ® and ¢’ then leads to an equation
which is at most cubic in z.

We would like to emphasize that all these results are
obtained within the framework of cycle expansion. It in-
dicates the effectiveness of the method in analytical calcu-
lation in chaotic system. In the next section, we shall
evaluate the closed form expression of D for A =B/m
(B=1,2,...,K ). This cannot be done without using
the cycle expansion.

IV. CLOSED FORM EXPRESSION OF D

From the previous discussions, we observe that there
are certain cases in which the zeros of the { function are
determined by a quadratic equation. Let us now concen-
trate on the case where A =8/m (=1, ...,K ). Since
the diffusion coefficient D is evaluated at =0, it is more
convenient to work with a polynomial in a. Further-
more, we only have to expand everything up to the order
of a?, terms of higher order of a do not contribute to D.
In fact, the solution of z as a function of a can be solved
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perturbatively with a being a small parameter. It turns
out that such an approximation scheme provides a nice
expression of D. The zeroth order solution z, can be ob-
tained by setting @=0in £, !. From Eq. (16) we have

2
29 Z9
1—(3+4K~)~——4B—2=0 . (30)
m m

By using the fact that K _ =(k —1)/2, we have

2
29 20

1——(2k+1)——-4[9’—7=0 . (31)
m m

It is interesting to note that the relevant solution z, of
(31) is exactly equal to 1. This is due to the fact that the
equation determining the slope m [from Eq. (14)] is

m?—(2k +1)m —4B=0, (32)
which is exactly Eq. (31) with z;=1. Hence the perturba-
tive solution of z, is given by

z,=z,+6=1+5. (33)

Expanding (16) in powers of a and using z, =1+, we
have

BK%

m?+4p

+

2a’m [k
6 T

+L£ g1k, +108-1)) ] T

It is obvious that the absolute value of the coefficient of
a? in (34) is just the diffusion coefficient

2m k BK2+
p=—2M" 1%k K_+
m2+48 l6 "
+ L g1k, +128-1) ] RNET

We would like to mention that for D to be a diffusion
coefficient, it has to be positive. This fact can be seen ex-
plicitly in (35) where each term is positive definite. Thus,
the minus sign in Eq. (34) is crucial.

By having the closed form of D, the large k behavior of
D can be obtained. For the case where B<<k, Eq. (35)
can be approximated by the following expression:

imp="—Kp gk . (36)
k—>o 24 12

Therefore, the large k limit of D in this case (h=B/m)
is dominated by the k? term and as a result D diverges as
k — . In the same way, we can also evaluate D in the
large k limit for 7 =(3k +B+1)/m. In this case it can
be shown that D also approaches infinity in the form of
k2. Tt is not hard to see how such scaling of D appears.
In this limit, there are some general properties that can
be seen from the equations which determine the slope m
of the model and the solution z, of the zeroth order ap-
proximation. First of all, the equation of m is a quadratic
equation and it is obvious that m is proportional to k as



2820

k — . Secondly, from the zeroth order equation of z, it
is easy to see that z is of order of unity as k — . Thus,
z, is insensitive to k in the large k limit. Therefore, the
diffusion coefficient D can then be given by the correction
of z,, for example, the § term in Eq. (33). However, the
largest term in 8 corrections is the term of the form
(1/m)3n? where the upper limit of the summation is of
order k. Since $n?is of order k> and m scales as k, thus
we have D ~k? and D diverges as k — .

It is natural to question the large k limit of D of the
other cases in which z is determined by a cubic equation.
Since the slope m still scales as k, z, is of the order of 1
which is insensitive to k as k — . Moreover, the cubic
equation is also simplified in the large k limit. This is
again due to the fact that z,~1 and m ~k. Effectively
the large k requirement reduces the cubic equation to a
quadratic equation. Therefore the correction of z, denot-
ed again by §, is also dominated by the term of the type
Sn 2. As a result, the scaling limit of D in all cases
should be k? as k approaches infinity. It remains to be
seen whether D ~k? is true for all other cases (with / be-
ing arbitrary) as kK — o0.

V. SCALING LIMIT OF D WITH k =1

In this section, we return to the case where k =1;
A <1/m and m <4. In fact, there exists an infinite num-
ber of cases in which D can be evaluated exactly. Fur-
thermore, a limiting case A —0 will be discussed and it
agrees with previous study.

These new /4’s are generated by the following relations:

h=1(m —3) (37)
and
m'h=1, 1=1,2,3,... . (38)
These equations imply
m!T1—3m'—4=0 (39)
where / =1 is the case (with m =4 and h=1) discussed

in [3] and also included in our previous discussions.

It is easy to obtain the symbolic dynamics of these
cases since no pruning arises here. The symbolic dynam-
ics which is complete and is generated by the following
symbols

(D={1,2,3,011,1)1[,(‘[1’,(11[’} y (40)

where I; is the shorthand notation for a series of 1 of
length /, namely,

al;=al---1. (41)

Similarly, I; is the shorthand notation for a series of 3 of
length /.
The cycle expansion of the § function is given by the
shortest prime periods
6‘1=1—t1——tz_t3_ta11—tb11—tcll’_td1; > (42)

and the equation for z is
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z ZI+1
1—3———4amha—7:T=0. (43)
m m
By using the same technique, we have the equation of z,
(by setting a to zero)

z(l)+1

zO _
1~3;~4—ml+l =0. (44)
It is obvious that z, =1 is a solution since Eq. (39) is the
same as Eq. (44) with z, replaced by 1. Thus the diffusion
coefficient is

pm— 2
Im'+4(l+1)

where m is given by (39). The case with m =3 is corre-
sponding to /— . Thus it is interesting to see how D
varies in the large / limit. In this limit, the height /4 ap-
proaches O.

The approximation of m can be written as m =3¢,
and 4 =€/4. Within this approximation, e=4/31, and D
is approximated by

D~le=2}, (46)

3<m=4;1=12,...), (45)

where A=€/12 has been used. Therefore D is linearly
proportional to the height 4 and approaches zero as
h —0. This result has been obtained by Grossmann and
Fujisaka [5] by using the invariant measure approach.

VI. CONCLUSIONS

In this work, we have shown that for piecewise linear
maps, deterministic diffusion can be discussed through
periodic orbits. This is being done by introducing the ap-
propriate symbolic dynamics and as a result all prime
periods of the system are identified. Employing the cycle
expansion of these maps, we have shown that all curva-
ture terms ¢, vanish and hence a convergent expansion is
reduced to an exact finite polynomial. Therefore exact
determination on the diffusion coefficient D becomes
feasible. The effectiveness of the cycle expansion is also
clearly shown in our results, as closed form solutions can
be obtained for a whole class of models. From our re-
sults, we conclude that the diffusion coefficient D is pro-
portional to k2 in the large k limit. It is conjectured that
such a scaling form is a general property of piecewise
linear map as k is large. Furthermore, by realizing the
fact that D is evaluated at a =0, an expansion in « is em-
ployed in this work and interesting results such as posi-
tiveness of D can be shown explicitly.

We have also found a whole sequence of % with
h<1/m (m<4). This case and its generalization
deserve further studies. The generalization can be con-
sidered in two directions. One obvious way to generate
more solvable models of % is to extend our discussion in
Sec. V (0<% <1/m) to any two consecutive values of /&
that we have discussed in Sec. III. We expect that
infinite numbers of new # can be found in this way. The
other possibility is to generate more 4 in between any two
consecutive values of # which are determined in Sec. V.
It is obvious that a hierarchy structure appears and we
expect that some sort of self similarity structure of D
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might exist. This line of work is now under investigation
and will be reported elsewhere.
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APPENDIX: THE PRUNING RULES
AND THE SYMBOLIC DYNAMICS

In this appendix, we collect all the results of the prun-
ing rules and the corresponding symbolic dynamics of the
cases discussed in the main text.

(@ hA=B/m (B=1,...,K,). The forbidden se-
quences are as follows: -al-, -aa-, -bl-, -bb-, -cl’-, -cc-,
-cd-, -dl'-, -dd-, where I=8+1,B+2,...,2k+1, and
I'=1,...,2k —pB. It follows that @ and b must always be

followed by i whereas ¢ and d are always followed by i’.
Here, i€{1,2,...,8}] and i'€{2k+1—B,2k+2

a

12 o a b
12 c a b 12 o a b

()

c

o oy o c d
o a ¢ d a; o o ¢ d

®

FIG. 3. Tree ?‘, of Eq. (A1), o=[(3k +1)/2]—pB and q; are
defined in the Appendix.
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—B,...,2k +1}. The symbolic dynamics is thus given
by the following unrestricted symbols:
(1,2,...,2k +1;ai,bi,ci’,di'}.

(b) A=(K_,/m)+A. The forbidden sequences are as
follows: -al-, -bl-, -cl'-, -dl’-, -ab-, -ac-, -ad-, -bb-, -bc-,
-bd-, -ca-, -cb-, -cc-, -da-, -db-, -dc-, where | and I’ are
defined as in the previous case. For this case, a and d
have fixed points and they are denoted by @ and d, respec-
tively. These fixed points should be included in the cycle
expansion, since they are not pruned. The unrestricted
symbols are as follows: {E,J;i,aky,baky,dk?,cddj_/},

where k =0,1,2,... and i€EQ={K , +1,...,K_+k};
yer={,2,...,K,} and y€T={(3k+1)/2,(3k
+3)/2,...,2k +1}.

() h=[(K,+B)/m]+2A (B=0,1,...,K_). Here,
the forbidden sequences are as follows: -al-, -bl-, -cl’-,
-dl'-ac-, -ad-, -bc-, -bd-, -ca-, -cb-, -da-, -db-.
I'=1,2,...,[(3k —1)/2]—pB. The unrestricted gram-
mar is given by the set ®:

o=(1,...,2k+1,s|s€T,, a=a,b,c,d}, (A1)

where T, is the set of all dotted elements in tree fa (see

/f\\/l\/l\

ca,aqu,,bcd

(2)

/I\/I\/N

calazu\‘,bcd a,anuqbcd

(b)

FIG. 4. Tree T, of the case A =[(3k +1)/2m]+3A and q;
are defined in the Appendix.
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Y

N

A o Ao
a,aza,,abl'_ a,a,zacd—l“
@
Y
a0 ag ¢ d r r

AN

o agc dT T alazaoabl“g

(b)

FIG. 5. Tree ”f’y and TY of Eq. (A3). The notations are
defined in the Appendix.

Fig. 3), only T, and T, are given in Fig. 3 in which
a;=K_ +B+i. T, (T,)can be obtained by replacing the
first generation a (c¢) with b (d), respectively. For exam-
ple, from Fig. 3, T, contains the symbols ai,aai,abi, . . .,
etc. The allowed prime cycles which are excluded by ®
are provided by ®':
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={plpET ,,a=a,b,c,d} , (A2)

where T, is the set of all undotted elements in the tree
T, given in Fig. 3, with o=(3k+1)/2 and
a;=(k+3)/2,(k+5)/2,...,2k +1.

d A=(k+1+B/m)+2A1 (8=0,1,2,...,K_). For

this case, ® and @’ are the same as deﬁned in (A1) and
(A2). The tree T is given in Fig. 3, with o=k +1+p
and a; =k +1—B,k +2—p, ...,2k +1.

(e) ﬁ:[(3k +1)/2m]+3A. The forbidden sequences
are as follows: -a7y-, -ad-, -b¥-, -bd-, -cy-, -ca-, -dvy-,
-db-, where 7=(3k +3)/2,(3k +5)/2,...,2k+1 and

ry=1, 2 K. In this case a new feature appears
since T, starts to mix among {a,b} and {c,d}. The sets
@ and <I>’ are defined as before with T, and T, given in
Fig. 4, where 0=(3k +1)/2 and «a;=(3k +3)/2,(3k
+5)/2,...,2k +1.

O  Rh=[(3k+1+2B)/2m]+4r (B=0,1,...,K_).
The forbidden sequences are as follows: -ay, -by-, -cy-,
-dy-. Where 7=(3k +2B+3)/2, (2k+2B+5)/
2,...,2k+1 and y=1,2,...,K, —B. The set ® is

given by

<I>={i,s|sET7, and Ty} . (A3)
Here i€U-—{y,7}; U={1,2,...,2k+1,a,b,c,d}
and {7, 7}={(1,2,...,K,—B; (3k +28+3)/2,(3k
+2B8+5)/2,...,2k +1}. 'S are given in Fig. 5,
where a,-EU’—{y,T/};U’:{l,Z,..._,2k+1}. [yer
={1,2,...,K+—/3} and yeT={(3k +28+1)/

2(3k +2B+3)/2,...,2k +1}. The line connecting y
and T is a shorthand notation for K, —f lines;
yI={ylLy2,...¥y(K, —B)}. Similarly, lines connectmg
two I'’s denote all combinations between all possible Y’s.
There are totally K, —f different T s. Similarly, the
same interpretation applies for ? J Slmllarly P’ is

={plpeT,}, (A4)

where T, is the set of all prime cycles generated by the
undotted sequences of T,
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